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Little is known about how the age pattern in individual perfor-
mance in cognitively demanding tasks changed over the past
century. The main difficulty for measuring such life cycle per-
formance patterns and their dynamics over time is related to
the construction of a reliable measure that is comparable across
individuals and over time and not affected by changes in technol-
ogy or other environmental factors. This study presents evidence
for the dynamics of life cycle patterns of cognitive performance
over the past 125 y based on an analysis of data from profes-
sional chess tournaments. Individual move-by-move performance
in more than 24,000 games is evaluated relative to an objective
benchmark that is based on the respective optimal move sug-
gested by a chess engine. This provides a precise and comparable
measurement of individual performance for the same individual
at different ages over long periods of time, exploiting the advan-
tage of a strictly comparable task and a comparison with an
identical performance benchmark. Repeated observations for the
same individuals allow disentangling age patterns from idiosyn-
cratic variation and analyzing how age patterns change over time
and across birth cohorts. The findings document a hump-shaped
performance profile over the life cycle and a long-run shift in
the profile toward younger ages that is associated with cohort
effects rather than period effects. This shift can be rationalized by
greater experience, which is potentially a consequence of changes
in education and training facilities related to digitization.

cognitive performance | lifetime | artificial intelligence |
age–period–cohort decomposition | digitization

Aging represents a key challenge for labor markets in many
countries. While capital deepening and rising education lev-

els tend to increase labor productivity on the aggregate (1, 2), the
work environment changes rapidly with cognitively demanding
tasks becoming more prevalent and important due to techno-
logical change and digitization (3–5). Existing evidence suggests
that cognitive skills are formed early in life (6, 7), but sur-
prisingly little is known about how individual performance in
cognitively demanding tasks varies over the life cycle and about
how these life cycle performance patterns have changed over the
past century.

The main difficulty of measuring life cycle patterns of cognitive
performance and their long-run dynamics is related to the con-
struction of a reliable performance measure that is comparable
across the life cycle for individuals of different cohorts and over
time. Empirical work in economics has traditionally focused on
work-related information about labor productivity at the level of
individuals (8, 9), at the team level (10), or at the firm level (11,
12). The evidence from this literature suggests that life cycle pro-
ductivity profiles are hump shaped, although the evidence for a
productivity decline at older ages is rather mixed, which might
depend on the specific context (13–15). Likewise, studies based
on aggregate data have typically found hump-shaped life cycle
productivity profiles (16–18). Work-related measures of produc-
tivity are not ideal for measuring performance in cognitively

demanding tasks, however, and are limited in terms of compara-
bility, technological work environment, labor market institutions,
and demand factors, which all exhibit variation over time and
across skill groups (1, 19). Investigations that account for changes
in skill demand have found evidence for a peak in performance
potential around ages of 35 to 44 y (20) but are limited to short
observation periods that prevent an analysis of the dynamics
of the age–performance profile over time and across cohorts.
An additional problem is related to measuring productivity or
performance in the presence of self-selection and variation in
job-related tasks (21, 22). Related work on scientific creativity
has documented substantial shifts in life cycle performance over
time due to changes in technology (23, 24), which has precluded
analyzing the long-run evolution of age–performance profiles in
this context (25).

Existing work in cognitive psychology has measured cogni-
tive performance in various dimensions. The results of cross-
sectional studies have shown that performance in tasks that are
primarily related to speed, memory, visualization, or reasoning
in information processing (related to fluid intelligence) exhibits
a decline with age, whereas performance in tasks that rely on
experience and accumulated knowledge (related to crystallized
intelligence) increases until age 50 or above (26, 27). Research
on expert performance has emphasized the role of practice (28),
and recent work has shown that intelligence and practice inter-
act in determining performance (29), thereby jointly affecting
lifetime performance profiles (30, 31). Neurological evidence
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suggests that learning and adaptability are related to biological
changes over the life cycle (32, 33). However, measures of cogni-
tive performance often involve abstract tasks that are unfamiliar
to subjects and unrelated to their professional activity. More-
over, they are typically only available at one point in life (e.g.,
for military conscripts), which has prevented their use for study-
ing age-related variability and period–cohort decompositions
(34). Due to the lack of direct measures of cognitive perfor-
mance that exhibit within-person variation over a sufficiently
large age spectrum and that are comparable across individuals
and over time, longitudinal studies for cognitive performance
profiles over the life span, in particular over long horizons, are
missing.

This paper develops an empirical strategy to estimate the age
profile of performance in cognitively demanding tasks and its
dynamics over the past 125 y, based on the performance of
professionals in high-stakes environments related to their profes-
sion. Concretely, the empirical strategy is based on the analysis of
data from professional chess tournaments involving world cham-
pions and their opponents. These data have several features that
make them ideal for measuring age–performance profiles and
their long-run dynamics. First, chess has been used in psychology
and neuroscience as a paradigmatic cognitive task that combines
processes related to perception, memory, and problem solving
(35, 36). Chess has a complex neural basis of automated pro-
cesses related to identifying the configuration of pieces and their
relations on the board, which involve circuits of different brain
regions (37, 38). Mounting evidence from psychology suggests
that becoming an expert in chess and other cognitively demand-
ing tasks is not just related to higher innate cognitive abilities
but also to training and the accumulation of experience (35,
39–42). The quality of a particular move thus reflects an ideal
measure of performance in a demanding cognitive task of the
sort that is gaining importance in the labor market. Second,
chess data are of exceptionally high quality and allow for mea-
suring individual performance with extreme accuracy, at the level
of individual moves during a chess game. In particular, perfor-
mance in chess can be measured against an objective benchmark,
the move that a chess engine suggests as the best-possible move
when facing the exact same decision problem. This allows for
constructing a measure of performance by comparing actual indi-
vidual moves with the optimal move for a given configuration.
Third, the exact same benchmark can be applied to each con-
figuration, and the benchmark does not change over time. In
contrast to the use of ratings that change over time and with
the performance of others (43), the use of move-level perfor-
mance has the advantage of measuring performance in a fully
comparable way across individuals and regardless of the tempo-
ral or environmental context. This implies that performance can
be compared directly within individuals and across individuals,
as well as over long periods of time, providing a unique possibil-
ity to investigate the consequences of technological change and
digitization across cohorts and over time: for instance, in the con-
text of the emergence of chess engines that changed education
and preparation facilities. Fourth, the analysis of performance
in a task that is observed repeatedly for the same individuals
allows for decomposing age patterns based on within-individual
variation from variation across different cohorts and over time.
Fifth, in terms of external validity, performance estimates based
on professional chess players are likely to constitute an upper
bound of cognitive performance over the life cycle. The resulting
measure thus provides a unique opportunity to isolate age–
performance patterns and analyze their dynamics over time and
across cohorts.

We use data from more than 24,000 chess games between
1890 and 2014 for the best players in the world, with more
than 1.6 million move-by-move observations. The data are based
on all games played by world champions in history through-

out their entire lives and contain performance information for
world champions and their respective opponents. The high stakes
related to financial rewards and reputation rule out incentive
problems. At the same time, the analysis delivers an estimate of
the life cycle patterns of cognitive performance and its dynamics
over time and across cohorts.

The empirical strategy is based on the comparison of individ-
ual performance against an objective benchmark—the optimal
move for a given configuration suggested by a chess engine—as a
measure of cognitive performance that is fully comparable over
long time ranges. Longitudinal data for the same individuals over
the life cycle allow disentangling age patterns from cohort and
period effects in a nonlinear specification. This enables an explo-
ration of the long-run dynamics of the age–performance profile
across periods and cohorts. In particular, the analysis applies
flexible panel regression models to estimate the age profile of
cognitive performance and its changes across groups of birth
cohorts and periods (Materials and Methods).

Previous work on the variation of cognitive performance in
the context of chess either has been based on behavioral exper-
iments with a cross-section of chess players of various ages and
strength, focusing on measures of decision speed and working
memory (44), or has been based on variation between individ-
uals using rating information as a proxy for performance in the
relation between age and mental performance among amateur
chess players (29, 30, 43, 45). In contrast, the analysis here uses
within-individual variation over a long range of time and many
cohorts and measures cognitive performance using a compara-
ble and objective measure based on move quality. This allows
for exploring the dynamics of the age–performance profile over
a long time horizon.

The Dynamics of the Age–Performance Profile
The estimation results reveal several insights about the life cycle
profile of cognitive performance and its dynamics over the past
125 y. Fig. 1A shows the life cycle pattern of performance by plot-
ting the results of nonparametric estimates of the age profile
using a local linear regression without conditioning on addi-
tional control variables and using data for the pooled sample
of world champions and their opponents. Performance reveals a
hump-shaped pattern over the life cycle. Individual performance
increases sharply until the early 20s and then reaches a plateau,
with a peak around 35 y and a sustained decline at higher ages.
The emerging life cycle performance pattern corresponds to sev-
eral findings in the previous literature that have estimated the
age profile on the basis of variation between individuals or using
work-related measures.

To rule out that the estimate of the life cycle performance pat-
tern is driven by third factors, we estimated richer specifications
of a multivariate regression model that controls for the color
of chess pieces, the number of moves per player in a game (to
account for fatigue), and the player-specific average complexity
of a game, as well as birth cohort, calendar period, and player
dummies. These estimates deliver similar results in terms of a
hump-shaped age pattern, with performance increasing during
young ages and decreasing during older ages. Fig. 1B illustrates
the estimated age profile for the cubic specification of age (esti-
mates are presented in SI Appendix, Table S1). Paralleling the
previous findings, the performance peak obtained with a cubic
specification for age and an extensive set of control variables is
at an age of around 35 y. The subsequent decline is much less
pronounced in the multivariate regressions. Similar results are
obtained for a specification with age bins instead of a quadratic
specification for age (SI Appendix, Fig. S1 and Table S1).

These results do not account for changes in the performance
of chess players over the past 125 y. Unconditional estimates
depicted in Fig. 2A show that the average performance was
substantially higher for later-born birth cohorts. The increase
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Fig. 1. Performance over the life cycle. (A) Local linear regression using an
Epanechnikov kernel for age. No other controls were added. The bandwidth
of 2.6 y is specified with Silverman’s rule of thumb. (B) Implied age pattern
from a multivariate estimation of the parametric specification of age using
a third-order polynomial, as in SI Appendix, Table S1, column (1). Dashed
lines report the 95% CIs (both panels).

in performance among players of the cohorts born after the
1970s compared with players born around the 1870s corresponds
to approximately eight percentage points (from 44% optimal
moves to approximately 52% optimal moves). For more recent
birth cohorts, the life cycle performance profile has increased
more rapidly at younger ages than for older cohorts. A similar
acceleration is visible in Fig. 2B for performance patterns by cal-
endar year. Performance increased steadily over the course of
the twentieth century, but the data also reveal a steepening of
the performance increase during the 1990s. This coincides with
a phase when new information technology and the availability
of powerful and affordable chess engines on home computers
made chess-specific knowledge widely available and dramati-
cally changed players’ preparation possibilities. The availability
of these new technologies may have improved the performance
of players in more recent cohorts by providing them with the pos-
sibility to gain more practice early in their careers but might have
equally benefited players of older cohorts by providing them with
better training facilities. The results are qualitatively and quan-
titatively very similar for world champions, for whom there is
considerably more within-person variation, and for opponents,
suggesting that the findings regarding the age profile and the

variation across time and cohorts are not driven by a particular
subsample (SI Appendix, Figs. S2–S4).

In order to disentangle whether and how these dynamics
affected the age–performance profile, Fig. 3 plots the age profile
for different birth cohorts and calendar periods. The resulting
pattern for birth cohorts in Fig. 3A confirms the finding that per-
formance increased for later birth cohorts. However, while the
increase was rather uniform across all age groups for the earlier-
born cohorts, the increase in performance is more pronounced
among younger ages for the later-born cohorts. Performance did
not increase equally across the entire age spectrum, but younger
cohorts experienced a faster increase early in life. The age profile
for different calendar periods shown in Fig. 3B reveals that the
increase in performance over time was associated with an upward
shift of the entire age profile during more recent periods. Simi-
lar to the cohort patterns, the age gradient has become steeper,
particularly for ages below 20. For the remaining age spectrum,
performance increased fairly uniformly over time.

The unconditional estimates in Fig. 3 do not account for sys-
tematic variation across players and games. To account for this,
an extended version of the multivariate regression model with
the same controls as before was estimated that also allows for
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Fig. 2. Changes in performance over the past 125 y. Local linear regressions
using an Epanechnikov kernel for age. No other controls were added. (A)
The bandwidth of 9.2 y is specified with Silverman’s rule of thumb. (B) The
bandwidth of 5.9 y is specified with Silverman’s rule of thumb. Dashed lines
report the 95% CIs (both panels).
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Fig. 3. Unconditional age–performance patterns by birth cohorts and cal-
endar periods. (A and B) Local linear regression using an Epanechnikov
kernel for age. No other controls were added. The bandwidth of 2.6 y is
specified with Silverman’s rule of thumb.

systematic variation in the age profile for different birth cohorts
and for different calendar periods. The corresponding estimates
are visualized in Fig. 4 (results for the specification with age
groups are shown in SI Appendix, Fig. S5). Similar to the uncon-
ditional estimates, the results reveal evidence for a hump-shaped
age profile. The combined estimates for changes in performance
across birth cohort bins and calendar period bins reveal that
the age profile exhibits substantial variation across birth cohorts.
In particular, for later-born cohorts, the performance profile is
higher and the increase in performance is considerably steeper
during younger ages. Considering calendar period, there is much
less discernible variation in the levels of the age profile, although
the age profile is mildly steeper at young ages in more recent
periods. Taken together, this suggests that the age profile exhibits
more variation across cohorts and that the unconditional results
for variation across calendar periods may partly pick up this
variation across cohorts.

Discussion
The finding of a hump-shaped pattern in cognitive performance
is robust to alternative performance measures, model specifica-
tions, and time periods. Very similar results were obtained when
using as a performance measure the average (logarithmic) dis-
tance between actual moves and best moves in terms of pawn

units (SI Appendix, Table S2). The results of the cubic specifica-
tions reveal a hump-shaped age pattern with a peak at an age
of around 40 y for the specification with controls, which is com-
parable with the baseline results for the share of optimal moves
as dependent variable. The results for the specification with age
bins deliver a significant increase in performance with age for
younger chess players below 35 y (SI Appendix, Table S1). Per-
formance decreases above the age of 45 y, although the decline
is not statistically significant. Qualitatively similar results are
obtained for the propensity to make important mistakes as a
dependent variable. Here, the results reveal a u-shaped age pat-
tern (SI Appendix, Figs. S6 and S7), although older players do
not appear to make more important mistakes (ref. 15 also has a
similar finding).

A possible concern about the external validity of these results
is related to the sample of games played by chess world cham-
pions and their opponents and the potential problem of positive
selection into a professional activity based on playing strength
(21, 46, 47). Conceptually, positive selection of players into the
sample would imply that measured cognitive performance and in
particular, the performance beyond the peak age of 35 to 45 y
constitute an upper bound when interpreting the implications of
the results for the general population. In fact, there is little evi-
dence for selection of top chess players on the basis of other fac-
tors than performance. Over the entire sample period, becoming
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Fig. 4. Conditional age–performance patterns by birth cohorts and cal-
endar periods. Implied age pattern from a multivariate estimation of
the parametric specification of age using a third-order polynomial and
additional control variables. The empirical model underlying A and B is
equivalent to the results in SI Appendix, Table S1, column (1) extended for
interactions between the cubic age profile with the dummies for cohort and
calendar period categories, respectively.
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a successful world class chess player was exclusively meritocratic,
and it required no particular parental, cultural, geographic, or
socioeconomic background and involved no restrictions by social
class or birth (48).∗

As a consequence of the sampling, which is based on all games
played by world champions throughout their lives, the group of
world champions should exhibit less selection than the group of
opponents. Nevertheless, the results about the age–performance
pattern and its shift across cohorts rather than over time are
robustly found for both groups (SI Appendix, Figs. S2, S8, and
S9). To investigate the influence of selection on the results
obtained with the baseline sample in more detail, we focus on the
opponents of the world champions for whom the performance
information over the life cycle is more sparse and collected data
of all games played by these opponents in the base sample over
their entire life. This allows replicating the results with data
from an alternative sample and exploring the role of positive
selection in games against world champions during particular
stages of their life. The results reveal qualitatively similar age–
performance patterns, including when considering the extended
sample for opponents that is less prone to such selection (SI
Appendix, Fig. S10), and corroborate the finding that shifts are
related to variation across cohorts rather than periods. In addi-
tion, the results from these data do not deliver strong evidence
for selection in terms of level differences in performance.

An exploration of selection related to the observation of play-
ers over shorter or longer age ranges using the baseline data (for
world champions) or the alternative data (for opponents) deliv-
ers evidence for positive selection, particularly during younger
ages (SI Appendix, Figs. S11 and S12), but the main results about
the age–performance profile and its dynamics remain unaffected.
This analysis also suggests that the results should be seen as
an upper bound of the estimate of the cognitive performance
patterns in the overall population, particularly at higher ages.
The implications of unobservable selection are not entirely clear,
however.

Possible channels that could cause the observed changes in
the age profile include variation in fatigue related to physical
and cognitive demands, variation in the style of play reflected
in the average complexity of a game, or variation in experience.
Accounting for fatigue, complexity, or experience in the estima-
tion of the age–performance profile by ways of interaction terms
reveals that the shape of the age profile is largely unaffected (SI
Appendix, Tables S3 and S4).

Systematic variation in the length of games might influence
performance through fatigue, which might vary differentially by
age. Using the number of moves played during a game as a proxy
measure for fatigue documents no clear relation between the age
pattern and the length of games (SI Appendix, Fig. S13). How-
ever, among more recent cohorts and games, younger players
seem to play somewhat longer games, although the effects are
not very pronounced. Nevertheless, this might be an indication
of an emerging advantage. At the same time, the average num-
ber of moves per game increased considerably during the most
recent decades, potentially reflecting improvements in prepa-
ration related to the availability of microcomputers and chess
engines. Regression results again reveal a hump-shaped age
profile for all levels of fatigue, with the lowest performance
among the younger and older players. Perhaps surprisingly, per-

*This has been suggested as an explanation for the historically large proportion of
chess grandmasters and world champions with a nonexceptional socioeconomic back-
ground. For example, Wilhelm Steinitz (1836 to 1900) was the youngest of 13 children
born to a tailor, Emmanuel Lasker (1868 to 1941) was the son of a cantor, and José
Raúl Capablanca (1888 to 1942) was the son of an army officer. The current world
champion, Magnus Carlsen (born 1990), is the son of an information technology
consultant and a chemical engineer (sources: Wikipedia [https://simple.wikipedia.org/
wiki/List of World Chess Champions] accessed on 18 March 2020).

formance increases with the number of moves played per game,
but fatigue leaves the findings for the age profile of performance
essentially unaffected (SI Appendix, Fig. S14).

Likewise, changes in complexity might affect the age pattern.
Using the average search depth of the chess engine in the respec-
tive configuration for a given time budget as an inverse mea-
sure of complexity reveals that complexity has decreased (the
search depth measured by the nodes evaluated by the engine has
increased) across cohorts and over time (SI Appendix, Fig. S15). If
complexity affects performance negatively, this might explain the
higher performance of more recent birth cohorts and potentially,
the variation in age patterns. Regression results indeed reveal a
significantly positive effect of search depth on performance (SI
Appendix, Tables S3 and S4). However, we also find that changes
in the age profile are not affected by systematic variation in the
complexity of games. In particular, the age–performance pattern
is essentially identical and only moderately shifted in parallel by
the complexity on the board (SI Appendix, Fig. S16). This suggests
that dynamics in cognitive demand or complexity do not explain
the dynamics in the hump-shaped age cycle.

Finally, using the number of previously played professional
chess games as a proxy for experience reveals that experience
increases with age. Moreover, the dynamics of experience sug-
gest that younger cohorts are more experienced for a given age,
and experience is higher in more recent periods, which might
explain the observed increase in performance at younger ages
(SI Appendix, Fig. S17). The results of the multivariate regres-
sions indeed reveal that, similar to age, the effect of experience
on performance is hump shaped. In light of evidence from psy-
chology that has shown that performance is a combination of
ability and practice (29, 30, 49), this suggests that the more rapid
spread of chess knowledge and the emergence of chess engines
and online playing opportunities led to a faster increase in per-
formance at younger ages. When allowing the age profile to vary
by experience, we continue to find a hump-shaped age profile,
but higher experience also accounts for some of the age profile
(SI Appendix, Fig. S18). In particular, for players with low experi-
ence, the performance increases with age sharply until about 37 y
of age. In contrast, for players with high experience, the increase
is much less pronounced and positive until only about 30 y of
age. Hence, variation in experience partly captures the dynamics
in the age profile over time. Taken together, technical change in
terms of the availability of chess engines could have accelerated
the accumulation of knowledge and experience and thereby, led
to a higher performance of players at younger ages.

To explore the link between experience and higher perfor-
mance at younger ages among more recent birth cohorts, we
conducted an additional robustness check considering perfor-
mance during a game. If improved preparation and knowledge
accumulation early in life in the context of new technologies
were to play a role, this could show in terms of differences
in performance during the different phases of a game. Perfor-
mance in the early phase of a game is influenced by the opening,
which typically follows moves that are studied and memorized
before the game, whereas the endgame exhibits more positional
variability but lower complexity. The advantage of improved
computer-based training and preparation might thus manifest
itself in different ways during different phases of the game. To
explore this possibility, the analysis was replicated by considering
separately the performance before move 30 and from move 30
onward. The results show that the performance increase during
young ages is more pronounced during later phases of the game
(SI Appendix, Figs. S19 and S20). Alternative robustness checks
were conducted when restricting to the first out-of-book moves
(moves 10 to 15) or to the last 10 moves of a game, with similar
results (SI Appendix, Figs. S21 and S22). Together, these results
confirm that changes in the age profile mostly refer to variation
among cohorts, not over time.
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In sum, we presented an analysis of the long-run changes in life
cycle profiles of cognitive performance based on panel data with
repeated observations of the same individuals over their life cycle
using an identical task, chess, and a fully comparable perfor-
mance evaluation across individuals and over time. The evidence
reveals a hump-shaped performance pattern over the life cycle.
Performance increased for more recent cohorts and over time.
The age profile mainly changed across cohorts rather than over
time, with the performance increasing faster at younger ages.

Materials and Methods
Performance in Chess. Modern chess rules originated during the fifteenth
century in Italy and Spain and have essentially not changed since the early
nineteenth century. Chess is a two-person zero-sum game with perfect infor-
mation and alternating moves. For this class of games, the optimal strategy
is strictly determined and may be found by backward induction (50–52). For
each configuration, chess engines compute an evaluation that represents a
proxy of the winning odds and is measured in so-called pawn units, where
one unit approximates the advantage of being up one pawn. Based on a
game tree for all possible moves by white/black of a given prespecified
length of n moves ahead (the so-called search depth), engines determine
the best next move, applying a best-response logic (SI Appendix, Fig. S23
shows an illustration). As a measure of performance, we compute the dif-
ference in the evaluation before a move (conditional on following the
computed continuation path of best responses) and right after (when the
engine has recalculated the evaluation of the configuration). This procedure
is equivalent to comparing the player’s positional evaluation right after the
actual move with the player’s evaluation had the player conducted the move
suggested by the engine.

The central advantage of this setup for addressing the research question
on performance over the life cycle and its long-run dynamics is that each
move played in the dataset can be evaluated using the exact same objective
benchmark, regardless of period, age, or birth cohort of the player. Alterna-
tive measures such as conventional Elo-ratings (43) are not comparable over
time.

Data. The data are a collection of all games played at regular time
controls (usually 40 moves within 2 h) by all chess world champions
since the first generally accepted world champion Wilhelm Steinitz (lived
1836 to 1900) to Magnus Carlsen (born in 1990, world champion since
2013). The data were assembled originally in ref. 53 and are based on
the commercially available chess database Chessbase and other online
sources commonly used in the chess community (the data are available
at http://www.alliot.fr/CHESS/ficga.html.en). The main dataset comprises
25,072 games with more than 1.6 million configurations, which were played
by (or against) the world champions of chess since 1859.† The data con-
tain nearly the entire lifetime history of games played in chess competitions
by world champions (including games before and after their acting as world
champion). The dataset contains detailed information about the date of the
game, color of chess pieces, scored points, and chessboard configurations
before and after each move (of the world champions and their opponents).
To rule out memorized moves and economize on computing costs, only
moves between moves 10 and 100 (so-called “out-of-book moves”) are
considered (the first moves of a chess game, “book moves,” are studied
intensively during the preparation of a game and usually correspond to
routine openings that have been memorized by players).

After generating the move-by-move measure for performance, the data
were aggregated on the player–game level.‡ This implies two observations
per game, one for each player. The aggregated data contain 50,143 game–
player observations (for one game by Tigran Petrosian, we do not observe
the moves of the opponent; we drop this game because it lasted for fewer
than 20 moves); 329 observations are omitted because the respective game
lasted for fewer than 20 moves. Furthermore, we restrict attention to games
played since 1890, which implies that 757 observations of games that took
place before 1890 are omitted.

†They are Wilhelm Steinitz, Emanuel Lasker, José Raúl Capablanca, Alexander Alekhine,
Max Euwe, Mikhail Botvinnik, Vasily Smyslov, Mikhail Tal, Tigran Petrosian, Boris
Spassky, Robert James Fischer, Anatoly Karpov, Gary Kasparov, Alexander Khalifman,
Viswanathan Anand, Ruslan Ponomariov, Rustam Kasimdzhanov, Veselin Topalov,
Vladimir Kramnik, and Magnus Carlsen.

‡The move-by-move evaluation follows that by Alliot (53).

In total, 4,294 players (20 world champions and 4,274 opponents) are
observed. We omit 3,422 players (5,205 observations) because fewer than
five games are observed for each of these players. The birth years of all play-
ers were collected from Wikipedia. For 98% of the remaining players, who
represent 99% of all games in the data, we were able to obtain information
about the birth year. We omit 284 observations because of missing player
birth year. Furthermore, 34 observations are omitted because the birth year
of the player is before 1836 (the birth year of the first world champion,
Wilhelm Steinitz), and 898 observations are omitted because the player is
aged below 12 or above 65 y. The final dataset contains 42,636 observa-
tions (24,379 games and 841 players). Descriptive statistics are reported in SI
Appendix, Table S5.

For robustness checks regarding selection, we collected data on all games
of the opponents of the world champions throughout their lives from the
chess database Chessbase. In contrast to the baseline data, which contain all
games played by world champions, the alternative data sample one random
white game and one random black game for each year in which at least one
game is observed in the database for a given opponent player in the baseline
dataset. This sample contains the same set of players as the baseline sam-
ple but is not selected based on whether a world champion participated in a
game. Performance evaluation for this dataset of 57,321 game–player obser-
vations over the period from 1890 to 2013 with 2.5 million configurations was
conducted in a comparable way as in the baseline sample.

Measure of Performance. Evaluations of configurations and quality of moves
were carried out with the use of STOCKFISH 8, an open-source program
that computes, for a given configuration of the pieces on the chessboard,
the best possible move (details are in ref. 53). With an estimated Elo-
rating exceeding 3,200 points, this engine provides a relevant benchmark
even for the best players in history (incumbent World Champion Magnus
Carlsen had an Elo-number of 2,872 in January 2020; https://ratings.
fide.com/toparc.phtml?cod=577; last accessed 17 March 2020).

In game g, the evaluation of player i’s position according to the chess
engine is Eigm′ pawn units before move m and Eigm pawn units after move
m, so that the corresponding change of the evaluation as a result of move m
is ∆igm = Eigm− Eigm′ pawn units. When computing Eigm′ , the chess engine
assumes that the player would play the move that the chess engine evalu-
ates as optimal. This implies that ∆igm = 0 if a player plays the optimal move
according to the chess engine and ∆igm < 0 if the player plays a move that
the engine evaluates as suboptimal. Thus, ∆igm is an increasing measure of
performance of player i for move m in game g. This performance measure
is comparable across different configurations, moves, games, and players
because it is benchmarked against the objective computer-generated move.
Players can achieve the performance of the computer-generated bench-
mark independent of endogenous factors, such as the initial evaluation of
the configuration, the strength of the opponent, or the complexity of the
configuration on the board.

As a baseline measure of performance, we use the share of optimal moves
of a player in a given game. This measure reflects an overall composite of
performance and is computed as

P̄ig =
1

#(i, g)

#(i,g)∑
m=1

(
1− I

{
∆igm < 0

})
· 100%,

with #(i, g) being the total number of moves of player i in game g and
I{·} being the indicator function. The resulting measure is distributed sym-
metrically between 0 and 100 and correlates positively with the probability
of winning as reflected by scoring points (SI Appendix, Fig. S24). A greater
share of optimal moves is associated with a higher winning probability, with
more than 40% of optimal moves effectively implying a winning probability
of more than 50%. As an alternative measure, we use the average (logarith-
mic) distance between actual moves and the computer-generated optimal
benchmark in terms of pawn units (SI Appendix, Fig. S25).

In addition, the data contain information about the search depth in terms
of nodes that the chess engine was able to evaluate within a prespecified
time limit of 3 min. Since this search depth is directly related to the branch-
ing factor of the game tree that arises from a given chess configuration
(as illustrated in SI Appendix, Fig. S23), lower search depth provides a use-
ful measure of the complexity of each configuration. We aggregated this
measure on the game level to obtain a measure of the average complexity
of each game.

Empirical Strategy. The empirical analysis is based on the partial linear
model,
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P̄ig = f(Aig, Ci , Tig) + Xigγ+φi + εig, [1]

where f(·) represents a function of age Aig, birth cohort Ci , and calen-
dar year Tig. The specification includes controls for player–game-specific
characteristics Xig (color, number of moves, and average complexity of the
game as measured by the search depth of the chess engine). For reasons
of clarity regarding the interpretation of our results, we use standardized
control variables (mean zero and SD one). In order to account for unob-
served heterogeneity that might influence the results systematically, the
empirical analysis includes player dummies φi , which account for all time
constant player characteristics, thereby identifying the age pattern from
within-person variation in age. We denote the error term by εig.

In the analysis, we consider both parametric and nonparametric specifi-
cations of f(Aig, Ci , Tig). As a benchmark, we specify fully flexible univariate
age, birth cohort, and calendar year profiles in specifications without
additional controls.

In multivariate regressions, we model age as a third-order polynomial:

f(Aig|Ci = c, Tig = t) = β1Aig + β2A2
ig/10 + β3A3

ig/100.

As an alternative, we estimate specifications with age groups.

It is well known that the effects of age, cohort, and period can-
not be disentangled without additional assumptions. Since the focus
of this paper is on the changes of performance over the life cycle
across periods and cohorts, and not about the absolute performance
at a given time or for a given cohort, we combine periods as well as
age cohorts into groups. This grouping allows identifying age, period–
group, and cohort–group effects. Moreover, since we are interested in
changes in performance across cohorts and over time, we focus on inter-
action terms of the age profile with birth cohort groups and calendar
periods.

Data Availability. Replication data and code have been deposited in Harvard
Dataverse (https://doi.org/10.7910/DVN/DZC0MT).
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